Tag Archives: obesity

You’re Still at Risk Healthwise Even If You’re “Metabolically Healthy”

I'll eat my hat if this dude doesn't have metabolic syndrome

I’ll eat my hat if this dude doesn’t have metabolic syndrome

See details at MedPageToday.

Some studies suggest you can be healthy and long-lived while obese as long as you are “metabolically healthy.” That is, if you have normal blood pressure, LDL cholesterol, triglycerides, blood sugar, and waist circumference. A new meta-analysis finds that ain’t so: you’re still at higher risk for death or cardiovascular events if you’re obese and free of metabolic syndrome features.

“Our results do not support this concept of ‘benign obesity’ and demonstrate that there is no ‘healthy’ pattern of obesity,” Kramer and colleagues wrote. “Even within the same category of metabolic status (healthy or unhealthy) we show that certain cardiovascular risk factors (blood pressure, waist circumference, low high-density lipoprotein cholesterol level, insulin resistance) progressively increase from normal weight to overweight to obese.”

Click for the scientific journal abstract.

This report does not directly address the “fat but fit” concept, whereby you can counteract some of the adverse health effects of obesity by being fit. By fit, I mean regularly exercising and achieving a decent level of capacity and tolerance for physical activity. Fat but fit still holds.

Steve Parker, M.D.

Does Turning Your Heater Down Help You Lose Weight?

Dr. Stephan Guyenet thinks it might. (I’m skeptical.) It’s not so much central heat as it is failing to expose our bodies adequately to temperatures around 60° F (15.6° C) or lower on a regular basis. Here’s a human experiment Dr. G wrote about:

The second study went further, using a longer cold exposure protocol to investigate changes in fat mass among people with low brown fat activity at baseline (4).  Researchers exposed volunteers to 63 F (17 C) air for two hours a day over a six-week period; again I assume they were lightly clothed.  As in the previous study, they observed an increase in brown fat activity with cold training, and they found that calorie expenditure was higher when subjects were in the ‘cold’ air.  After six weeks of training, body fat mass had declined by about 5 percent.  This is despite the fact that all subjects were lean to begin with!

Read the rest.

Mount Humphries on the horizon is highest point in Arizona, 12,633 ft above sea level. High and cold.

Mount Humphries on the horizon is highest point in Arizona, 12,633 ft above sea level. High and cold.

I thought this study tied in with that one showing an inverse relationship between altitude and obesity. Environmental temperatures rise roughly 3° F with every 1,000 feet (305 meters). But the altitude study controlled for (accounted for) temperature, meaning that the temperature had nothing to do with the association.

Somebody’s probably already tried to link environmental temperatures—whether inside the house or out—to obesity rates. Let me know if you find it.

—Steve

Update:

A few minutes at Pubmed.gov revealed this 2013 abstract:

Objective: Raised ambient temperatures may result in a negative energy balance characterized by decreased food intake and raised energy expenditure. This study tested whether indoor temperatures above the thermoneutral zone for clothed humans (approx. 23 o C) were associated with a reduced body mass index (BMI). Design and Methods: Participants were 100,152 adults (≥ 16 years) drawn from 13 consecutive annual waves of the nationally representative Health Survey for England (1995 – 2007). Results: BMI levels of those residing in air temperatures above 23 o C were lower than those living in an ambient temperature of under 19 o C (b = -.233, SE =.053, p <.001), in analyses that adjusted for participant age, gender, social class, health and the month/year of assessment. Robustness tests showed that high indoor temperatures were associated with reduced BMI levels in winter and non-winter months and early (1995 – 2000) and later (2001 – 2007) survey waves. Including additional demographic, environmental, and health behavior variables did not diminish the link between high indoor temperatures and reduced BMI. Conclusions: Elevated ambient indoor temperatures are associated with low BMI levels. Further research is needed to establish the potential causal nature of this relationship.

And there’s this abstract, probably from the altitude study I mentioned:

http://www.ncbi.nlm.nih.gov/pubmed/23357956

“There was an approximately parabolic relationship between mean annual temperature and obesity, with maximum prevalence in counties with average temperatures near 18 °C [64.4° F].”

I don’t have the full article, but parabolic, to me in this context, probably means the obesity incidence was highest at 64.4° F, with lower obesity incidence both above and below 64.4°.

Of course, living in a particular environment doesn’t equate to exposing yourself to outdoor temperatures. But it makes sense that someone living in a cold environment will have more cold exposure than someone in a hot climate.

Perhaps 64.4° F is a sweet spot for efficient body temp regulation and energy partitioning. Living at temps significantly above or below that may cost you energy-wise: you expend extra calories maintaining a normal body temperature, tending to result in lower obesity incidence.

The Less Sugar, the More Overweight in a Scottish Population

Fanatic Cook Bix found a study showing an inverse relationship between sugar intake and body fat in a Scottish study. In other words, overweigh and obesity increased as sugar consumption fell. It’s not what I  had expected.  haven’t read the original report yet.

Gut Bacteria Affect Obesity and Leanness

Keep your fat germs away from me!

Keep your fat germs away from me!

From a Gina Kolata article at The New York Times:

The evidence is from a novel experiment involving mice and humans that is part of a growing fascination with gut bacteria and their role in health and diseases like irritable bowel syndrome and Crohn’s disease. In this case, the focus was on obesity. Researchers found pairs of human twins in which one was obese and the other lean. They transferred gut bacteria from these twins into mice and watched what happened. The mice with bacteria from fat twins grew fat; those that got bacteria from lean twins stayed lean.

Here’s the experiment write-up.

These findings may lead the way to new obesity treatments.

Sleep Deprivation May Not Cause Overweight After All

Advanced Mediterranean Diet

Dr. Emily Deans says if you need an alarm clock to wake up, you’re probably not getting enough sleep

It’s currently popular to blame inadequate sleep time for overweight and obesity. I found a study supporting that idea in children, but not adults. Here’s the authors’ conclusion:

While shorter sleep duration consistently predicts subsequent weight gain in children, the relationship is not clear in adults. We discuss possible limitations of the current studies: 1.) the diminishing association between short sleep duration on weight gain over time after transition to short sleep, 2.) lack of inclusion of appropriate confounding, mediating, and moderating variables (i.e. sleep complaints and sedentary behavior), and 3.) measurement issues.

I found another analysis from a different team that is skeptical about the association of sleep deprivation and obesity in adults.

Everybody knows adults are getting less sleep now than we did decades ago, right? Well, not really. From Sleep Duration Across the Lifespan: Implications for Health:

Twelve studies, representing data from 15 countries and a time period of approximately 40 years, attempted to document changes in sleep duration over that time period. They found that, overall, there is no consistent evidence that sleep durations worldwide are declining among adults. Sleep duration decreased in six countries, sleep duration increased in seven countries, and mixed results were detected in two (one of which was the USA). In particular, the data from the USA suggest that although mean sleep duration may have actually increased slightly over the past 40 years, the proportion of short sleepers (six hours per night or less) also seems to have increased over the past several decades.

See, it’s complicated. Don’t believe everything you read. Not even this.

Steve Parker, M.D.

PS: It’s fun being an iconoclast now and then!

Do Environmental Pollutants Cause Diabetes or Obesity?

"Today we're going to learn about odds ratios and relative risk."

“Today we’re going to learn about odds ratios and relative risk.”

A week ago I watched part of a documentary called “Plastic Planet” on Current or Al Jazeera TV. It was alarming. Apparently chemicals are leaking out of plastics into the environment (or into foods contained by plastic), making us fat, diabetic, impairing our fertility, and God knows what else. The narrator talked like it was a sure thing. I had to go to work before it was over. A couple mentioned chemicals I remember are bisphenol A (BPA) and phthalates. I sorta freaked my wife out when I mentioned it to her. I always take my lunch to work in plastic containers.

A few days later I saw a report of sperm counts being half of what they were just half a century ago. (It’s debatable.) Environmental contaminants were mentioned as a potential cause.

So I spent a couple hours trying to figure out if chemical contamination really is causing obesity and type 2 diabetes. In the U.S., childhood obesity has tripled since 1980, to a current rate of 17%. Even preschool obesity (age 2-5) doubled from 5 to 10% over that span. In industrial societies, even our pets, lab animals (rodents and primates), and feral rats are getting fatter! The ongoing epidemics of obesity and type 2 diabetes, and our lack of progress in preventing and reversing them, testify that we may not have them figured out and should keep looking at root causes to see if we’re missing anything.

Straightaway, I’ll tell you it’s not easy looking into this issue. The experts are divided. The studies are often contradictory or inconsistent. One way to determine the cause of a condition or illness is to apply Bradford Hill criteria (see bottom of page for those). We could reach a conclusion faster if we did controlled exposure experiments on humans, but we don’t. We look at epidemiological studies and animal studies that don’t necessarily apply to humans.

Regarding type 1 diabetes and chemical contamination, we have very little data. I’ll not mention type 1 again.

What Does the Science Tell Us?

For this post I read a couple pertinent scientific reviews published in 2012, not restricting myself to plastics as a source of chemical contaminants.

The first was REVIEW OF THE SCIENCE LINKING CHEMICAL EXPOSURES TO THE HUMAN RISK OF OBESITY AND DIABETES from non-profit CHEM Trust, written by a couple M.D., Ph.D.s. I’ll share some quotes and my comments. My clarifying comments within a quote are in [brackets].

“It should be noted that diabetes itself has not been caused in animals exposed to these chemicals [a long list] in laboratory studies, but metabolic disruption closely related to the pathogenesis of Type 2 diabetes has been reported for many chemicals.”

“In 2002, Paula Baillie-Hamilton proposed a hypothesis linking exposure to chemicals with obesity, and this is now gaining credence. Exposure to low concentrations of some chemicals leads to weight gain in adult animals, while exposure to high concentrations causes weight loss.”

“The obesogen hypothesis essentially proposes that exposure to chemicals foreign to the body disrupts adipogenesis [fat tissue growth] and the homeostasis and metabolism of lipids (i.e., their normal regulation), ultimately resulting in obesity. Obesogens can be functionally defined as chemicals that alter homeostatic metabolic set-points, disrupt appetite controls, perturb lipid homeostasis to promote adipocyte hypertrophy [fat cells swelling with fat], stimulate adipogenic pathways that enhance adipocyte hyperplasia [increased numbers of fat cells] or otherwise alter adipocyte differentiation during development. These proposed pathways include inappropriate modulation of nuclear receptor function; therefore, the chemicals can be termed EDCs [endocrine disrupting chemicals].”

Don't assume mouse physiology is the same as human's

Don’t assume mouse physiology is the same as human’s

Literature like this talks about POPs: persistent organic pollutants, sometimes called organohalides. The POPs and other chemical contaminants that are currently suspicious for causing obesity and type 2 diabetes include BPA, arsenic, pesticides, phthalates, metals (e.g., cadmium, mercury, organotins), brominated flame retardants, DDE (dichloro-diphenyldichloroethylene), PCBs (polychlorinated biphenyls), trans-nonachlor, dioxins.

Another term you’ll see in this literature is EDCs: endocrine disrupting chemicals. These chemicals mess with hormonal pathways. EDCs that mimic estrogen are linked to obesity and related metabolic dysfunction. Some of the chemicals in the list above are EDCs.

The fear—and some evidence—is that contaminants, whether or not EDCs, are particularly harmful to embryos, fetuses, and infants. For instance, it’s pretty well established that mothers who smoked while pregnant predispose their offspring to obesity in adulthood. (Epigenetics, anyone?) Furthermore, at the right time in the life cycle, it may only take small amounts of contaminants to alter gene expression for the remainder of life. For instance, the number of fat cells we have is mostly determined some time in childhood (or earlier?). As we get fat, those cells simply swell with fat. When we lose weight, those cells shrink, but the total cell number is unchanged. What if contaminant exposure in childhood increases fat cell number irrevocably? Does that predispose to obesity later in life?

The authors note that chemical contaminants are more strongly linked to diabetes than obesity. They do a lot of hemming and hawing, using “maybe,” “might,” “could,” etc. They don’t have a lot of firm conclusions other than “Hey, people, we better wake up and look into this further, and based on the precautionary principle, we better cut back on environmental chemical contamination stat!” [Not a direct quote.] It’s clear they are very concerned about chemical contaminants as a public health issue.

Here’s the second article I read: Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review. About 50 experts were empaneled. Some quotes and my comments:

“Overall, the review of the existing literature identified linkages between several of the environmental exposures and type 2 diabetes. There was also support for the “developmental obesogen” hypothesis, which suggests that chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes [maturation and development of fat cells] or the development of neural circuits that regulate feeding behavior. The effects may be most apparent when the developmental [early life] exposure is combined with consumption of a high-calorie, high-carbohydrate, or high-fat diet later in life.”

“The strongest conclusion from the workshop was that nicotine likely acts as a developmental obesogen in humans. This conclusion was based on the very consistent pattern of overweight/obesity observed in epidemiology studies of children of mothers who smoked during pregnancy (Figure 1) and was supported by findings from laboratory animals exposed to nicotine during prenatal [before birth] development.”

I found some data that don’t support that conclusion, however. Here’s a graph of U.S. smoking rates over the years since 1944. Note that the smoking rate has fallen by almost half since 1983, while obesity rates, including those of children, are going the opposite direction. If in utero cigarette smoke exposure were a major cause of U.S. childhood obesity, we’d be seeing less, not more, childhood obesity. I suppose we could still see a fall-off in adult obesity rates over the next 20 years, reflecting lower smoking rates.  But I doubt that will happen.

“The group concluded that there is evidence for a positive association of diabetes with certain organochlorine POPs [persistent organic pollutants]. Initial data mining indicated the strongest associations of diabetes with trans-nonachlor, DDT (dichloro-diphenyltrichloroethane)/DDE (dichloro-diphenyldichloroethylene)/DDD (dichloro-chlorophenylethane), and dioxins/dioxin-like chemicals, including polychlorinated biphenyl (PCBs). In no case was the body of data considered sufficient to establish causality [emphasis added].”

“Overall, this breakout group concluded that the existing data, primarily based on animal and in vitro studies [no live animals involved], are suggestive of an effect of BPA on glucose homeostasis, insulin release, cellular signaling in pancreatic β cells, and adipogenesis. The existing human data on BPA and diabetes (Lang et al. 2008Melzer et al. 2010) available at the time of the workshop were considered too limited to draw meaningful conclusions. Similarly, data were insufficient to evaluate BPA as a potential risk factor for childhood obesity.”

“It was not possible to reach clear conclusions about BPA and obesity from the existing animal data. Although several studies report body weight gain after developmental exposure, the overall pattern across studies is inconsistent.”

“The pesticide breakout group concluded the epidemiological, animal, and mechanistic data support the biological plausibility that exposure to multiple classes of pesticides may affect risk factors for diabetes and obesity, although many significant data gaps remain.”

“Recently, the focus of investigations has shifted toward studies designed to understand the consequences of developmental exposure to lower doses of organophosphates [insecticides], and the long-term effects of these exposures on metabolic dysfunction, diabetes, and obesity later in life. [All or nearly all the studies cited here were rodent studies, not human.] The general findings are that early-life exposure to otherwise subtoxic levels of organophosphates results in pre-diabetes, abnormalities of lipid metabolism, and promotion of obesity in response to increased dietary fat.”

In case it’s not obvious, remember that “association is not the same as causation.” For example, in the Northern hemisphere, higher swimsuit purchases are associated with summer. Swimsuit sales and summer are linked (associated), but one doesn’t cause the other. Swimsuit purchases are caused by the desire to go swimming, and that’s linked to warm weather.

In at least one of these two review articles, I looked carefully at the odds ratios of various chemicals linked to adverse outcomes. One way this is done is too measure the blood or tissue levels of a contaminant in a population, then compare the adverse outcome rates in animals with the highest and lowest levels of contamination. For instance, if those with the highest contamination have twice the incidence of diabetes as the least contaminated, the odds ratio is 2. You could also call it the relative risk. Many of the potentially harmful chemicals we’re considering have a relative risk ratio of 1.5 to 3. Contrast those numbers with the relative risk of death from lung cancer in smokers versus nonsmokers: the relative risk is 10. Smokers are 10 times more likely to die of lung cancer. That’s a much stronger association and a main reason we think smoking causes lung cancer. Odds ratios under two are not very strong evidence when considering causality; we’d like to have more pieces of the puzzle.

These guys flat-out said arsenic is not a cause of diabetes in the U.S.

Overall, the authors of the second article I read were clearly less alarmed than those of the first. Could the less-alarmed panelists have been paid off by the chemical industry to produce a less scary report, so as not to jeopardize their profits? I don’t have the resources to investigate that possibility. The workshop was organized (and paid for, I assume) by the U.S. government, but that’s no guarantee of pure motivation by any means.

You need a break. Enjoy.

You need a break. Enjoy.

My Conclusions

For sure, if I were a momma rat contemplating pregnancy, I’d avoid all those chemicals like the plague!

It’s premature to say that these chemical contaminants are significant causes of obesity and type 2 diabetes in humans. That’s certainly possible, however. We’ll have to depend on unbiased scientists to do more definitive research for answers, which certainly seems a worthwhile endeavor. Something tells me the chemical producers won’t be paying for it. Universities or governments will have to do it.

You should keep your eyes and ears open for new evidence.

There’s more evidence for chemical contaminants as a potential cause of type 2 diabetes than for obesity. Fetal and childhood exposure may be more harmful than later in life.

If I were 89-years-old, I wouldn’t worry about these chemicals causing obesity or diabetes. For those quite a bit younger, taking action to avoid these environmental contaminants is optional. As for me, I’m drinking less water out of plastic bottles and more tap water out of glass or metal containers. Yet I’m not sure which water has fewer contaminants.

Humans, particularly those anticipating pregnancy and child-rearing, might be well advised to minimize exposure to the aforementioned chemicals. For now, I’ll leave you to your own devices to figure out how to do that. Good luck.

Why not read the two review articles I did and form your own opinion?

Unless the chemical industry is involved in fraud, bribery, obfuscation, or other malfeasance, the Plastic Planet documentary gets ahead of the science. I’m less afraid of my plastic containers now.

Steve Parker, M.D.

Additional Resources:

Sarah Howard at Diabetes and the Environment (focus on type 1 but much on type 2 also).

Jenny Ruhl, who thinks chemical contaminants are a significant cause of type 2 diabetes (search her site).

From Wikipedia:

The Bradford Hill criteria, otherwise known as Hill’s criteria for causation, are a group of minimal conditions necessary to provide adequate evidence of a causal relationship between an incidence and a consequence, established by the English epidemiologist Sir Austin Bradford Hill (1897–1991) in 1965.

The list of the criteria is as follows:

  1. Strength: A small association does not mean that there is not a causal effect, though the larger the association, the more likely that it is causal.
  2. Consistency: Consistent findings observed by different persons in different places with different samples strengthens the likelihood of an effect.
  3. Specificity: Causation is likely if a very specific population at a specific site and disease with no other likely explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal relationship.
  4. Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and expected effect, then the effect must occur after that delay).
  5. Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed: greater exposure leads to lower incidence.
  6. Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the mechanism is limited by current knowledge).
  7. Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect. However, Hill noted that “… lack of such [laboratory] evidence cannot nullify the epidemiological effect on associations”.
  8. Experiment: “Occasionally it is possible to appeal to experimental evidence”.
  9. Analogy: The effect of similar factors may be considered.

Science-Based Medicine blog has more on Hill’s criteria.

Is mTORC1 Modulation the Key To Diseases of Civilization?

Was Hippocrates the dude that said something about “make food your medicine”?

Bodo Melnik has an article in DermatoEndocrinology regarding the dietary causes of acne.  He also comments on the role of Western foods in obesity, cancer, diabetes, high blood pressure, and neurodegenerative disorders.  These are our old friends, the “diseases of civilization.”  Melnik mentions the Paleolithic diet favorably.

Melnik says it’s all tied in with mTORC1: mammalian target of rapamycin complex 1.

A snippet:

These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of industrialized food and fast food distribution of Westernized countries. An attenuation of mTORC1 signaling is only possible by increasing the consumption of vegetables and fruit, the major components of vegan or Paleolithic diets. The dermatologist bears a tremendous responsibility for his young acne patients who should be advised to modify their dietary habits in order to reduce activating stimuli of mTORC1, not only to improve acne but to prevent the harmful and expensive march to other mTORC1-related chronic diseases later in life.

You sciencey types can read the rest.  Our new friend mTOR also seems to be involved with growth of muscle induced by resistance exercise.

h/t Mangan

Is Obesity Caused By Lack of Altitude?

Sounds crazy, doesn’t it? An article at Obesity Panacea has the details that may convince you.

In case you can’t see that link, here’s the URL: http://blogs.plos.org/obesitypanacea/2013/04/10/obesity-and-altitude/

If You’re Obese, Very Low-Carb Diet Improves Heartburn

He probably takes Prilosec daily

He probably takes Prilosec daily

I’ve heard anecdotal reports of this for years.  Here’s scientific evidence, although only eight patients were studied.  Whether those at normal weight or overweight improve similarly is unknown to me.

PS: Frequent episodes of heartburn is a condition called GERD: gastroesophageal reflux disease.

h/t Melissa McEwan

Does Diet Affect Age-Related Memory Loss and Dementia Risk?

dementia, memory loss, Mediterranean diet, low-carb diet, glycemic index, dementia memory loss

Don’t wait to take action until it’s too late

High blood insulin levels and insulin resistance promote age-related degeneration of the brain, leading to memory loss and dementia according to Robert Krikorian, Ph.D.  He’s a professor in the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Academic Health Center.  He has an article in a recent issue of Current Psychiatry – Online.

Proper insulin signaling in the brain is important for healthy functioning of our brains’ memory centers.  This signaling breaks down in the setting of insulin resistance and the associated high insulin levels.  Dr. Krikorian makes much of the fact that high insulin levels and insulin resistance are closely tied to obesity.  He writes that:

Waist circumference of ≥100 cm (39 inches) is a sensitive, specific, and independent predictor of hyperinsulinemia for men and women and a stronger predictor than body mass index, waist-to-hip ratio, and other measures of body fat.

Take-Home Points

Dr. Krikorian thinks that dietary approaches to the prevention of dementia are effective yet underutilized.  He mentions reduction of insulin levels by restricting calories or a ketogenic diet: they’ve been linked with improved memory in middle-aged and older adults.

Dr. K suggests the following measures to prevent dementia and memory loss:

  • eliminate high-glycemic foods like processed carbohydrates and sweets
  • replace high-glycemic foods with fruits and vegetables (the higher polyphenol intake may help by itself)
  • certain polyphenols, such as those found in berries, may be particularly helpful in improving brain metabolic function
  • keep your waist size under 39 inches, or aim for that if you’re overweight

I must mention that many, perhaps most, dementia experts are not as confident  as Dr. Krikorian that these dietary changes are effective.  I think they are, to a degree.

The Mediterranean diet is high in fruits and vegetables and relatively low-glycemic.  It’s usually mentioned by experts as the diet that may prevent dementia and slow its progression.

Read the full article.

I’ve written before about how blood sugars in the upper normal range are linked to brain degeneration.  Dr. Krikorian’s recommendations would tend to keep blood sugar levels in the lower end of the normal range.

Steve Parker, M.D.

PS: Speaking of dementia and ketogenic, have you ever heard of the Ketogenic Mediterranean Diet?  (Free condensed version here.)